
Initial data 

The initial data is located into a data structure consisting of arrays of pointers, headers and items. 

Declarations of items as C / C++ structs are presented in file Items.h.  There are 10 different types of items 

(ITEM1, ITEM2, …, ITEM10). Declarations of headers as C / C++ structs are presented in file Headers.h. 

There are 5 different types of headers (HEADER_A, HEADER_B, HEADER_C, HEADER_D, HEADER_E). The 

both files are stored in Instructor's stuff.  

There are 5 different types of data structures (Struct1, Struct2, Struct3, Struct4, Struct5). To generate the 

initial data structure you have to use functions from ICS0017DataSource.dll. This DLL is implemented by 

instructor and stored in Instructor's stuff. It needs auxiliary file Colors.txt, created from 

https://en.m.wikipedia.org/wiki/Lists_of_colors. 

To understand the building principles of our data structures analyse the examples on the following pages. 

Let us emphasize that they are just examples: the actual presence and absence of items and headers is 

determined by the work of item generator built into ICS0017DataSource.dll and is largerly occasional.  

The DLL imports 6 public functions declared in file ICS0017DataSource.h (also stored in Instructor's stuff). 

Five of them create data structure and return the pointer to it. The sixth function (GetItem()) constructs a 

stand-alone item and returns the pointer to it. There is also a password-protected function for the 

instructor. Comments explaining the usage of public functions are in ICS0017DataSource.h. 

To know which item and data structure you have to use see the table. 

  

http://www.tud.ttu.ee/im/Viktor.Leppikson/ICS0017%20Practical%20work.html
http://www.tud.ttu.ee/im/Viktor.Leppikson/ICS0017%20Practical%20work.html
https://en.m.wikipedia.org/wiki/Lists_of_colors
http://www.tud.ttu.ee/im/Viktor.Leppikson/ICS0017%20Practical%20work.html
http://www.tud.ttu.ee/im/Viktor.Leppikson/ICS0017%20Practical%20work.html


 



  



 

   



 



 

  



Task #1 

Write a C / C++ function that prints in the command prompt window the contents of all the items from 

the current data structure.  

Prototype (text printed in blue depends on the type of data structure, specify it yourself): 

void PrintDataStructure(pointer_to_data_structure); 

The output should be similar to the following: 

 

If the data structure is empty, print an error message.  

Task #2 

Write a C / C++ function that inserts a new item into the current data structure.  

Prototype (text printed in blue depends on the type of data structure, specify it yourself): 

pointer_to_data_structure = InsertItem(pointer_to_data_structure, char *pNewItemID = 0); 

The new item must be constructed by function GetItem() from ICS0017DataSource.dll. The user may set 

the ID itself or set the pointer to it to zero. In the last case the ID is selected by GetItem(). 



You may freely select the position of new item in the linked list of items. 

The return value is the pointer to the modified data structure. 

The function must keep the current contents of data structure and throw an exception if: 

• An item with same ID is already in the data structure. 

• The ID presented by user does not follow the formatting rules. 

Task #3 

Write a C / C++ function that removes the specified item from the current data structure.  

Prototype (text printed in blue depends on the type of data structure, specify it yourself): 

pointer_to_data_structure = RemoveItem(pointer_to_data_structure, char *pItemID); 

The memory fields occupied by the item to be removed must be released (use operator delete). Do not 

forget that if a header has lost all the items or other headers associated with it, this header itself must 

also disappear. 

The return value is the pointer to the modified data structure. 

The function must keep the current contents of data structure and throw an exception if: 

• Item with the specified ID does not exist. 

• The ID presented by user does not follow the formatting rules. 

First steps 

1. Launch Visual Studio and a start the new project.  The project template must be Visual C++ 

Windows Console Application. Suppose that the project name you have selected is Coursework1 

and the location folder is C:\ICS0017. The wizard creates project file C:\0017\Courswork1.sln and 

source code  folder C:\ICS0017\Coursework1\Coursework1. Into source code folder it puts files 

Coursework1.cpp containing a simple main() function and also some auxilary files. 

2. Buid you solution. Then set the configuration to Release and build once more. Now you have all 

the folders you need. 

 

3. Set the configuration back to Debug. From Instructor's stuff extract DateTime.h, Headers.h, 

Items.h, ICS0017DataSource.h, Colors.txt and ICS0017DataSource.lib. Store them in the source 

code folder C:\ICS0017\Coursework1\Coursework1. In the Visual Studio Solution Explorer right-

click Header Files and from the pop-up menu select Add → Existing Item. From the existing file 

list select all the four *.h files and click Add.  

http://www.tud.ttu.ee/im/Viktor.Leppikson/ICS0017%20Practical%20work.html


 

4. From Instructor's stuff extract ICS0017DataSource.dll in debug mode. From the set of folders 

created by Visual Studio find folder Debug (there are at least two of them, you must select the 

folder containing file Coursework1.exe) and store ICS0017DataSource.dll into it. Extract also 

ICS0017DataSource.dll in release mode and store into folder Release. 

5. In the solution folder right-click Coursework1 and from pop-up menu select Properties. In the 

Property Pages box set configuration to All Configurations. Then open the Linker properties list, 

select Input and click on row Additional Dependences: 

 

6. Click on the button at the right edge of Additional Dependences list. A menu opens, from it select 

<Edit…>.  The Additional Dependeces box opens, write into it ICS0017DataSource.lib (not *.dll). 

Select OK and once more OK. 

http://www.tud.ttu.ee/im/Viktor.Leppikson/ICS0017%20Practical%20work.html


 

7. Now you may test is your project well prepared. Suppose you must use Struct2 and ITEM3 and 

you want to create the structure containing 100 items. Then write: 

#include <iostream> 
#include "DateTime.h" 
#include "Items.h" 
#include "Headers.h" 
#include "ICS0017DataSource.h" 
// IMPORTANT: follow the given order of *.h files: ICS0017DataSource.h must be 
// the last 
int main() 
{ 
 HEADER_C *p = GetStruct2(3, 100); 
 ITEM3 *pNewItem = (ITEM3 *)GetItem(3); 
 return 0; 
} 

This program should run. To see the results you have to implement PrintStruct() function. 

To run your application without Visual Studio, put your release *.exe together with Colors.txt and 

ICS0017DataSource.dll into a separate folder.  

Evaluation1 

The students must prepare a test function (see below) verifying that all the 3 implemented functions are 

working correctly. 

 
1 Here we suppose that the semester as well as the session will be carried on in normal way. 



The deadline is the end of examinations in January. However, it is strongly advised to present the results 

of coursework during the semester. The students can do it after each lecture. 

Presenting the final release is not necessary. It is OK to demonstrate the work of application in Visual 

Studio environment. 

To get the assessment the students must attend personally. Electronically (e-mail, GitHub, etc.) sent  

courseworks are neither accepted nor reviewed. The students may be asked to explain their code or even 

right on the spot write a small modification. 

Test cases 

Write function main() that: 

1. Sets the number of items to 30 and prints the data structure.  

2. One after another inserts new items with identifiers: Z A, Z Z, Z K, A Z, A A, A K, G Z, G A, G K, M A, M 

Ba, M Bb, M Z. 

3. Trys to insert items with identifier M Ba (already exists) and Mba(illegal format) and prints the error 

messages. 

4. Prints the new data structure of 43 items. 

5. One after another removes the items that were just inserted. 

6. Trys to remove items with identifier M Ba and Mba and prints the error messages. 

7. Prints the data structure. 

 


